

A 15/60 GHz ONE-STAGE MMIC FREQUENCY QUADRUPLER

Kazuo Shirakawa, Yoshihiro Kawasaki, Yoji Ohashi,
and Naofumi Okubo

Fujitsu Laboratories Ltd.
1015 Kamikodanaka, Nakahara-ku, Kawasaki 211, Japan

ABSTRACT

We have developed a 15/60 GHz one-stage MMIC frequency quadrupler using a 0.25- μ m AlGaAs/GaAs HEMT. The HEMT was characterized by our empirical large-signal model, in which charge conservation and dispersion are taken into consideration.

We included this model in a commercially-available harmonic balance circuit simulator, and designed the one-stage quadrupler. The fabricated MMIC quadrupler has a conversion gain of -5 dBm with -5 dBm of output power for a 0 dBm input signal.

1. INTRODUCTION

For high-speed wireless data transmissions, an RF local oscillator with low phase-noise and high frequency-stability is required. However in the millimeter-wave frequency range, it is difficult to meet such requirements.

As prototypes, pseudomorphic HEMTs or InP-based HEMTs are used for millimeter-wave oscillators [1]. However, millimeter-wave signals in practical systems are usually generated using a combination of a PLO and a chain of frequency multipliers. For example, a 60 GHz oscillator employs a 15 GHz PLO as the source signal, followed by a 15/30 GHz doubler and a 30 GHz buffer amplifier, then a 30/60 GHz doubler to generate the 60 GHz signal. Thus, a conventional configuration has three-stages [2]. We have developed a 15/60 GHz one-stage MMIC frequency quadrupler to replace conventional doubler-chains.

To our knowledge, this is the first reported one-stage MMIC quadrupler using a HEMT.

We characterized an AlGaAs/GaAs HEMT with a 0.25- μ m long and 100- μ m wide gate by using an original empirical large-signal model. In this model, several principle intrinsic elements are represented by a set of simple functions of bias voltages, and both charge conservation and dispersion effects are taken into account [3,4].

We implemented our large-signal model in a circuit simulator, and successfully designed a MMIC quadrupler. The fabricated quadrupler has -5 dB of conversion gain for a 14.75 GHz input signal at 0 dBm.

2. HEMT MODEL

2.1 SMALL-SIGNAL CHARACTERIZATION

We used an AlGaAs/GaAs HEMT with a gate 0.25 μ m long and 100 μ m wide for our quadrupler. The typical $Idss$ and gm values are 20 mA and 37 mS at Vds = 3.0 V.

To evaluate the large-signal behavior of this HEMT, we measured its S-parameters up to 62.5 GHz, and characterized them using a conventional small-signal equivalent circuit. We assumed that the extrinsic elements were independent of bias, and determined from S-parameters measured at a typical A-class amplifier's operating bias. Then the intrinsic elements' dependence on Vgs and Vds was obtained from S-parameters measured at various bias settings [3].

2.2 LARGE-SIGNAL CHARACTERIZATION

We used the large-signal model in Figure 1 to characterize the HEMT.

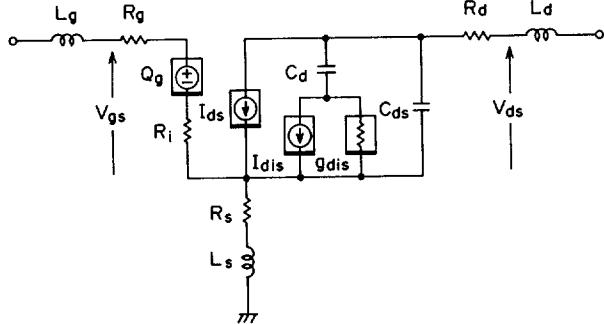


Figure 1. Large-signal model of a HEMT.

Considering both accuracy and calculation costs, we treated C_{gs} , C_{gd} , gm , and gds as bias dependent elements. The remaining intrinsic elements, R_i , τ , and C_{ds} , are treated as constants-fixed at the values corresponding to the particular bias conditions determined by the type of application [4].

In this model, the charge source Q_g corresponding to C_{gs} and C_{gd} is given by

$$Q_g(V_{gs}, V_{ds}) = Q_0 \frac{\left(\frac{3}{2} + \tan^{-1}(V_j)\right)V_j - \frac{1}{2} \ln(1 + V_j^2)}{1 + \exp(\delta V_{ds})} + Q_c \left(1 + \frac{1}{2 \cosh(\mu V_{ds})}\right) \exp(\lambda V_{gs}), \quad (1)$$

where

$$V_j = \gamma \left(V_{gs} + \alpha \sqrt{V_{gs}^2 + V_{gg}} - V_{ds} + \beta \sqrt{V_{ds}^2 + V_{dd}} \right), \quad (2)$$

and Q_0 , δ , Q_c , λ , μ , γ , α , β , V_{gg} and V_{dd} are the fitting parameters. C_{gs} and C_{gd} are defined as derivatives of Q_g .

Figure 2 compares C_{gs} values obtained from S-parameter measurements with those calculated using Equation 1. The fitting parameters in Eqs. 1 and 2 are determined by applying

simultaneous curve-fitting to obtained C_{gs} and C_{gd} values.

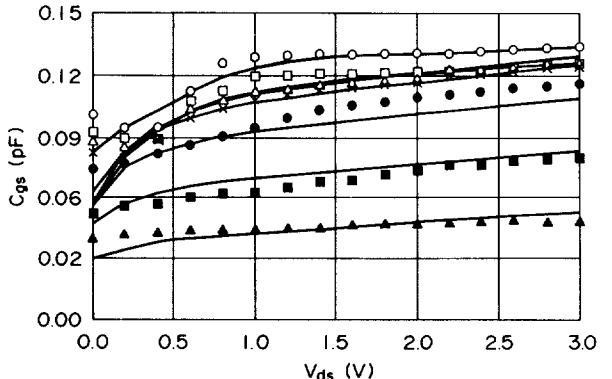


Figure 2. Large-signal characteristics of C_{gs} . Marks denote measured values and the solid lines show calculated values.
 $V_{gs} = +0.4$ to -0.8 (0.2 V intervals).

The drain to source characteristics are essentially represented by two current sources, Id for DC and $Idis$ for the dispersion effect. We modeled these current sources by the same form equation as,

$$Id(V_{gs}, V_{ds}) = I_0 e^{V_g} \left[\delta(V_g + V_{g1}) V_{ds} + \tanh(\lambda V_{ds}) \right], \quad (3)$$

where

$$V_g = 1 + \alpha \tan^{-1} \beta (V_{gs} + V_{g0}), \quad (4)$$

and I_0 , δ , V_{g1} , λ , α , β , and V_{g0} are the fitting parameters. g_{dis} is added to correct small deviations, and is given by

$$g_{dis}(V_{ds}) = \frac{g_0 V_{ds}}{(1 + \alpha V_{ds}^2)}, \quad (5)$$

where g_0 and α are the fitting parameters. The fitting parameters in Eqs. 3 to 5 are simultaneously determined by using DC current, gm , and gds data obtained by S-parameters characterization.

Figure 3 compares DC current data with the values calculated using the model. Figure 4

shows a similar comparison for gm at RF. There is clearly a good agreement.

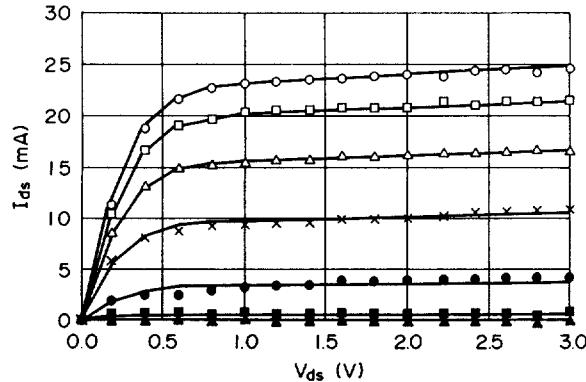


Figure 3. DC current comparison. Marks denote measured values and the solid lines show calculated values using Eq. 3. $V_{gs} = +0.4$ to -0.8 (0.2 V intervals).

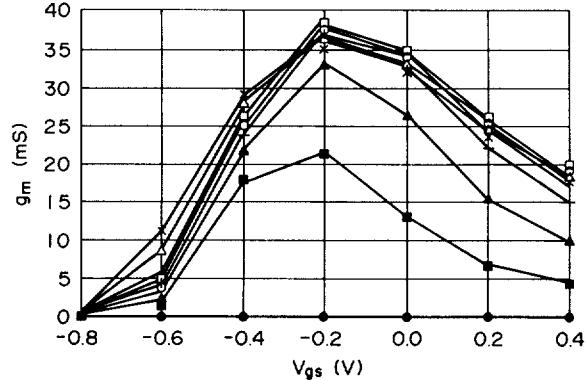


Figure 4. Large-signal characteristics of gm . Marks denote measured values and the solid lines calculated values. $V_{gs} = +0.4$ to -0.8 (0.2 V intervals).

3. 15/60 GHz MMIC FREQUENCY QUADRUPLER

3.1. CIRCUIT DESIGN

We first obtained the operating bias ($V_{gs} = -0.45$ V, $V_{ds} = 3.0$ V) to derive the maximum fourth-harmonic generation [5].

The large-signal impedances are then calculated for the gate of the HEMTs at the fundamental frequency (fo), and for its drain at the fourth-harmonic (4 fo). Using nonlinear

optimization, we determined the input circuit to achieve conjugate matching at fo . We also did this for the output circuit at 4 fo . We represented these impedances in a linear circuit simulator, and designed circuits to eliminate undesirable frequency components.

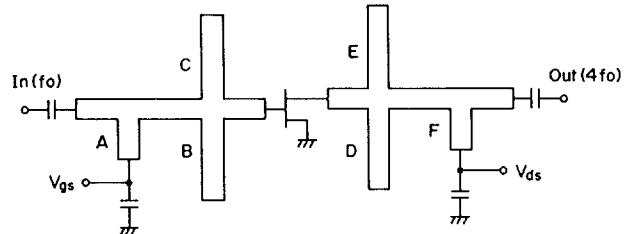


Figure 5. Circuit schematic of 15/60 GHz quadrupler.

Figure 5 shows the circuit schematic of the quadrupler. For the input side, short-stub A is used for gate biasing and signal matching at fo , and open-stubs B and C cooperate to provide short-impedances for undesirable signal components.

For the output side, open-stubs D and E provide short-impedances for undesirable signal components, while short-stub F is used for drain biasing and signal matching at 4 fo .

3.2. QUADRUPLER PERFORMANCE

Figure 6 shows a photo of the fabricated quadrupler. The chip measures 1.7 by 1.4 mm.

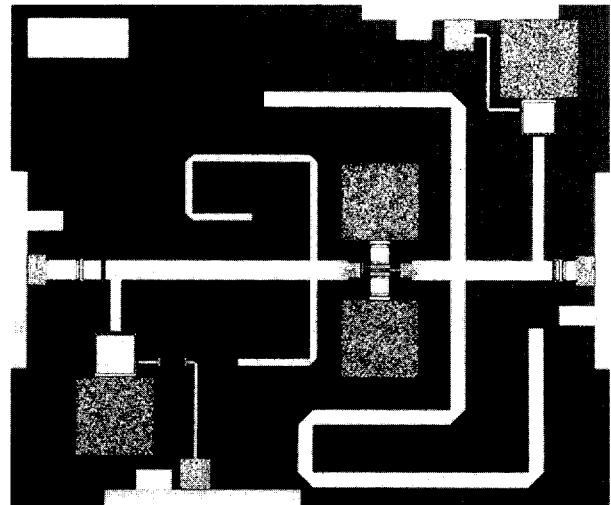


Figure 6. Photo of the fabricated quadrupler.

As shown in Figure 7, the quadrupler has a maximum frequency response for 14.75 GHz input signals.

Figure 8 shows the input-output characteristics of the quadrupler at 14.75 GHz. We obtained a conversion gain of -5 dBm for the input signal at 0 dBm. The maximum conversion gain was at an input power of about -1 dBm, and for +5 dBm of input, we can get -2 dBm of output power.

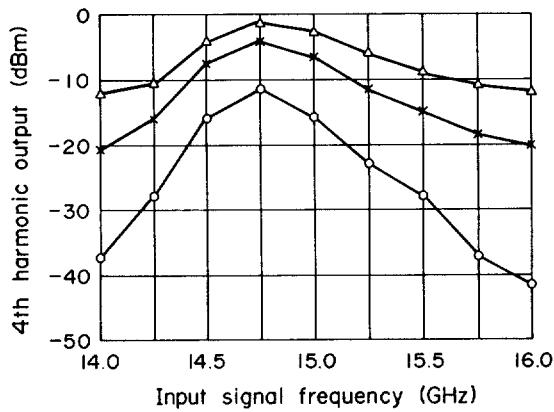


Figure 7. Frequency response of the quadrupler. $V_{GS} = -0.5$ V and $V_{DS} = 3.0$ V.
 ○ : Pin = -5 dBm, × : Pin = 0 dBm,
 Δ : Pin = +5 dBm

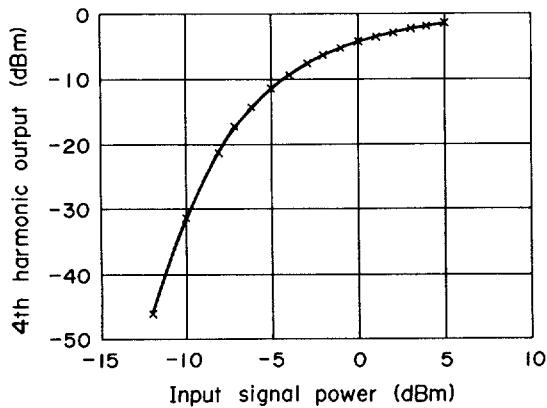


Figure 8. Input-output characteristics of the quadrupler for a 14.75 GHz input signal.
 $V_{GS} = -0.5$ V and $V_{DS} = 3.0$ V.

4. CONCLUSIONS

We have developed a 15/60 GHz one-stage MMIC frequency quadrupler using a AlGaAs/GaAs HEMT with a gate 0.25 μ m long and 100 μ m wide.

The HEMT was characterized with an original empirical large-signal model. In this model, C_{GS} , C_{GD} , g_m , and g_{DS} were treated as bias dependent elements, and the charge conservation and dispersion effects were taken into consideration. The remaining intrinsic element were treated as constants-fixed at the values corresponding to the particular bias conditions determined by the application.

We implemented this model in a commercially-available circuit simulator, and successfully designed the one-stage quadrupler. The fabricated MMIC quadrupler had -5 dB of conversion gain for a 14.75 GHz input signal at 0 dBm.

REFERENCES

1. I. Telliez et al., "Millimeter Wave Phase Locked Oscillator for Mobile Communication Systems.", IEEE Microwave and Millimeter-Wave Monolithic Circuits Symposium, pp. 49-52, 1995.
2. H. Wang et al., "A W-band Source Module Using MMICs.", IEEE MTT-S Digest, pp. 91-94, 1994.
3. K. Shirakawa et al., "An Approach to Determining an Equivalent Circuit of HEMTs," IEEE Trans. MTT-43, pp. 499-503, Mar. 1995.
4. K. Shirakawa et al., "A New Empirical Large-signal HEMT Model," IEEE Trans., in press.
5. Y. Kawasaki et al., "A 30-to-60 GHz Monolithic HEMT Frequency Doubler.", 24th EuMC, pp. 332-337, 1994.